

August 4, 2015

CIBO Conference Portland, ME

Sorbent Injection Information and Case Studies

Gerald Hunt Flue Gas Treatment Solutions Team Lhoist North America

Why is DSI Continuing to Gain Success?

- Improved Performance and Versatility
 - ✓ Improvements in DSI Technology and Associated Tools
 - Injection lances, distribution and mixing tools
 - Improved understanding/design around material handling; better system reliability
 - Improved understanding of flue gas considerations (temperature, other acids present, moisture)
 - Tools such as CFD modeling, reaction models
 - √ Improvements in Sorbents (calcium based)
 - Standard hydrates
 - "FGT grade" hydrates
 - Enhanced hydrates
 - Finer particles
 - High surface area/pore volume
 - Sorbacal® SP/SPS

Lhoist Sorbent Information

Sorbent	Standard Hydrated Limes	FGT Grade Sorbacal® H	Sorbacal [®] SP	Sorbacal® SPS
Figure				ACTIVATION
Typical Available Ca(OH) ₂ - [%]	92 – 95	93	93	93
Typical Surface Area - [m²/g]	14 – 18	> 20	~40	~40
Typical Pore Volume - [cm³/g]	~0.07	0.08	~0.20	~0.20
Typical D ₅₀ - [microns]	5 – 7	5 – 7	8 – 12	8 – 12

Why Consider Enhanced Sorbents?

- Reduced sorbent consumption
- Achieve higher removal performance
- Potential operating cost savings
- Potential capital cost savings on equipment
 - Design based on enhanced hydrated lime
- Lower mass loading of calcium based "dust" on particulate control device and ash handling systems
 - Especially for ESP applications
- Fewer deliveries
- Less fly ash / spent sorbent disposal
- Different sorbents may behave differently, testing is important!
 - Also provides versatility for future needs and case study materials!

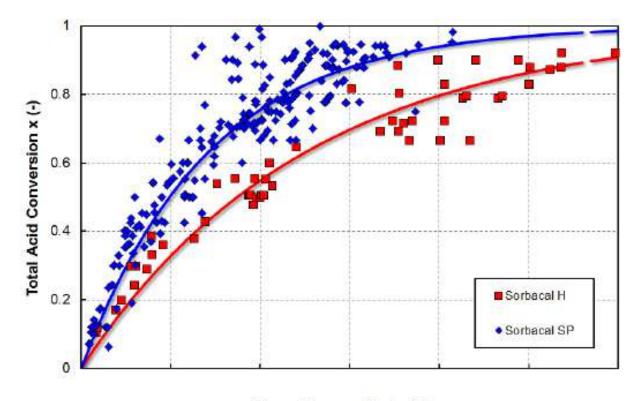
Case Study Development – TRIALS!

LNA has actively participated in 36 trials in the last 2

years

✓ Utility & Industrial

- ✓ BMACT, MATS, Permit
- ✓ HCl, SO₃, SO₂, and HF
- Trials important to confirm performance
 - Various injection configurations
 - Fuels
 - Sorbents
 - Changes in load/process
 - Site specific equipment needs

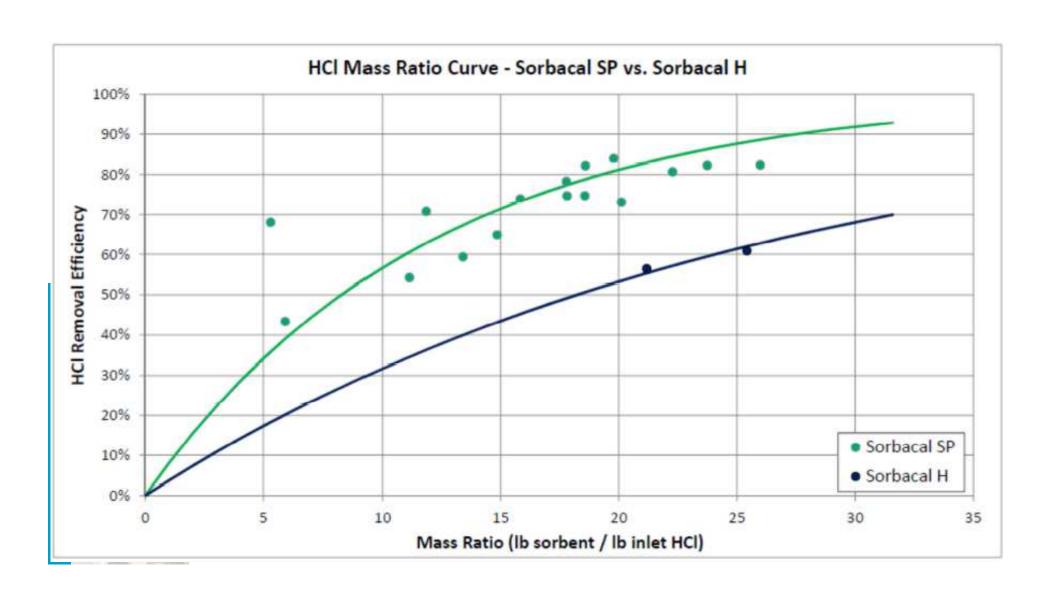

No.	Driver	Pollutant(s)	Sorbents	Application		LNA Scope	
					Sorbent	FTIRs	DSI
1	Consent	SO2	SP & SPS	Carbon Black	Х		
2	IB MACT	HCI	H & SP	Pulp & Paper	X		
3	IB MACT	HCI	H & SP	Institution	X		
4	IB MACT	HCI	н	Misc	X		
5	Existing	HCI	H & SP	EGU	Х	X	
6	MATS	HCI, SO2	SP	EGU	Х		
7	Consent	HCI, SO2	SPS	EGU	X		
8	IB MACT	HCI	H & SP	Misc	Х	X	
9	Permit	SO2	SPS	Steel	X		Х
10	Permit	SO2	SPS	Steel	X		Х
11	Consent	SO2	SPS	Carbon Black	X		
12	MATS	HCI & Hg	SPAC	EGU	Х	X	X
13	Existing	SO2	SP	EGU	X	X	
14	Permit	HCI, HF, SO2	SPS	Tile	Х	X	Х
15	NAAQS	SO2	SP & SPS	Institution	Х		
16	MATS	SO3	SP	EGU	X		
17		SO2	SPS	Pilot	Х	Х	
18	Consent	SO3	SP	EGU	Х		
19	HISWI	HCI	SP	Medical Waste	X		
20	Permit	HCI, HF, SO2	SPS	Tile	X	X	Х
21	IB MACT	HCI	SP	Glass	Х		
22	Permit	SO2	LKD, Std HL & SPS	Lime	Х	X	X
23	IB MACT	HCI	Std HL & SP	Misc	X	Х	Х
24	Consent	SO2	SPS	Cement	Х		Х
25	Consent	SO2	SLS45	Cement	X		
26	Consent	SO2	SPS	Cement	X		
27	IB MACT	HCI	SP	University	X		
28	Consent	SO2	Н	Cement	X		X
29	Consent	SO2	SPS	Brick	X		
30	IB MACT	Hg	SPS10AC	Pulp & Paper	X		Х
31	IB MACT	HCI	SP	Pulp & Paper	X		
32	Permit	SO2	SPS	Tile	X		
33	MATS	SO3	н	Utility	Х		
34	Regional Haze	SO2	SPS	Utility	X	Х	
35	NESHAP	HCI	SPS	Cement	X		
36	Permit	SO2, HCl, HF	SPS	Tile	X	X	

Lhoist Experience

- Commercial Trial Library
 - ✓ Example: SO₂ removal in baghouse applications
 - ✓ Wide range of process conditions, applications.
 - ✓ Sorbacal[®] SP twice as active as Sorbacal H (FGT type)

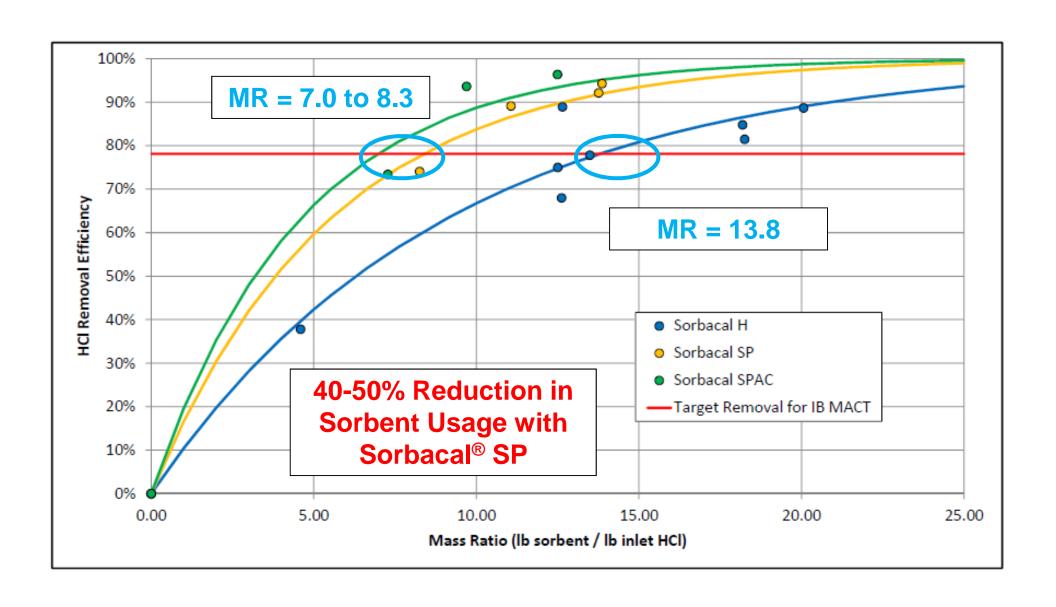
DSI Case Studies

Case Study – Pulp and Paper

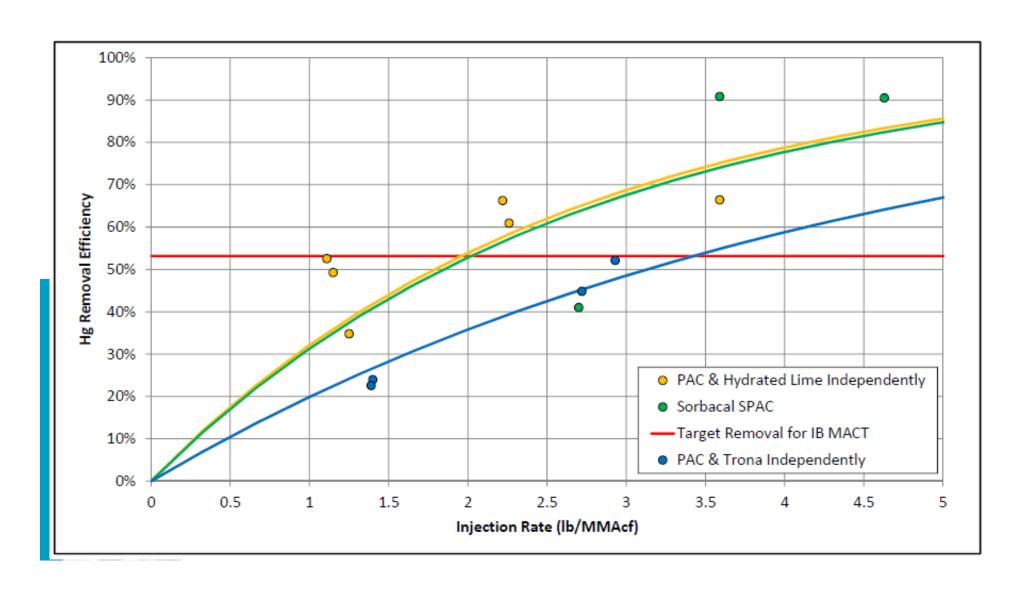


- Application → Pulp & Paper
- Goal → ~ 65% HCl Removal Efficiency
- Why → Meet IB MACT HCI Limit of 0.022 lb/MMBtu
- Boiler → Air Heater → DSI → ID Fans → ESP
- Process Conditions
 - ✓ Flue gas flow rate ~400,000 ACFM
 - ✓ Flue gas moisture ~7-8% by volume
 - ✓ Baseline HCl concentration ~40 ppmv
 - √ Flue gas temperature at DSI location ~375 degrees F
- DSI → Eight (8) Injection Lances @ DSI Location
- Sorbent → Sorbacal[®] H & Sorbacal[®] SP
- Challenges → HCl Compliance w/ ESP

Case Study – Pulp and Paper


Case Study – Industrial Multi-Pollutant Case Study – Industrial Multi-Pollutant

- Application → Industrial Facility w/ Existing DSI
- Goal → ~80% HCl & ~55% Hg Removal Efficiency
- Why → Meet Hg + HCl IB MACT Limits
- Boiler → Economizer → Multi-Clone → DSI → FF
- **Process Conditions**
 - ✓ Flue gas flow rate ~100,000 ACFM
 - ✓ Flue gas moisture ~6-6.5% by volume.
 - ✓ Baseline concentrations ~0.1 lb/MMBtu HCl / 4-6 lb/TBtu Hg
 - ✓ Flue gas temperature at DSI location ~375-390 degrees F
- Sorbents → Sorbacal® SP / BPAC Blended Sorbent
- Challenges -> Simultaneous HCI + Hg Compliance with Single Sorbent


Results and Discussion – HCI Parametric Curve

Results and Discussion – Hg Parametric Curve

Case Study – Tile

- Plant used sodium bicarbonate (SBC) and Sorbacal® SP
- SBC was used for SO₂ and HCl control but was not removing HF to permitted levels; 2nd system was installed to inject Sorbacal[®] SP for HF

System #1 Goal → 90% HCl, 85% HF & 60% SO₂ Reduction System #2 Goal → 95% HCl & 65% HF Reduction

- Residue could not pass TCLP (selenium and chromium)
 - classified as hazardous waste: \$550/ton to landfill
- Sorbacal[®] SPS able to achieve SO₂, HCl and HF limits and passed TCLP test; reduced landfill costs by \$480/ton
- Continue to work with customer to optimize Sorbacal[®]
 SPS performance for all acid gases
 - ✓ Humidification, mixing, injection lances

Case Study - Tile

Other Applications of Interest

- PAC Protection
- Visible blue plume
- Corrosion protection
- Heat rate improvement / air heater protection
- CFB boiler w/ limestone → back end HCl control
- SO₂ removal on plants with existing FGD
 - Large Units for SO₂ trim
 - Replace slurry in FGD for high SO₂ removal efficiency

Who is Lhoist?

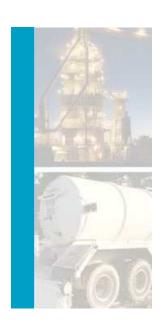
- A family owned company
 - ✓ Founded 1889
 - ✓ Belgium origin

- ✓ World's largest lime company
- ✓ About 6,000 employees, 30 nationalities
- ✓ Nearly 100 plants in 25 countries

- 24 Manufacturing plants, lime capacity ~ 6 million tpy
- ✓ 1 Corporate Research & Development (R&D) center
- ✓ 4 Application, Service and Development (ASD) centers
- √ 5 Fully Equipped Centralized Laboratories (CL)

1889	1926	The 80's	The 90's	New millennium
Foundation of the Group in Belgium	First expansion to France	Crossing the Atlantic (US)	Further development to Western & Eastern Europe	South America, Asia & Russia

Summary



Thank you!!

If you have any questions feel free to contact,

gerald.hunt@lhoist.com

